针对空气质量级别的影响因子较多,存在实时性、非线性和随机变化的特点,提出一种基于频率粒子群优化概率神经网络的算法(BAPSO-PNN)来对空气质量状况进行评价。文章利用改进粒子群算法能够有效调节全局和局部搜索平衡性的优点,对PNN网络中的spread参数进行优化,从而建立BAPSO-PNN算法,并从数据分析的角度来对空气质量状况进行评价,最后与经典算法PSO-PNN的仿真结果进行对比。结果表明,BAPSO-PNN算法具有较高的评价精度、运算和收敛速度,具有较高的实际应用价值。