位置:成果数据库 > 期刊 > 期刊详情页
基于自适应视距投影和类词典的三维模型检索
  • ISSN号:1000-7024
  • 期刊名称:《计算机工程与设计》
  • 时间:0
  • 分类:R319[医药卫生—基础医学] R445[医药卫生—影像医学与核医学;医药卫生—诊断学;医药卫生—临床医学]
  • 作者机构:[1]Department of Electronic Engineering, School of Information and Electronics, Beijing Institute of Technology, Beijing 1000811 China
  • 相关基金:Supported by the National Natural Science Foundation of China (Nos. 60971133, 61271112).
中文摘要:

The volume of hippocampal subfields is closely related with early diagnosis of Alzheimer’s disease.Due to the anatomical complexity of hippocampal subfields,automatic segmentation merely on the content of MR images is extremely difficult.We presented a method which combines multi-atlas image segmentation with extreme learning machine based bias detection and correction technique to achieve a fully automatic segmentation of hippocampal subfields.Symmetric diffeomorphic registration driven by symmetric mutual information energy was implemented in atlas registration,which allows multi-modal image registration and accelerates execution time.An exponential function based label fusion strategy was proposed for the normalized similarity measure case in segmentation combination,which yields better combination accuracy.The test results show that this method is effective,especially for the larger subfields with an overlap of more than 80%,which is competitive with the current methods and is of potential clinical significance.

英文摘要:

The volume of hippocampal subfields is closely related with early diagnosis of Alzheimer's disease. Due to the anatomical complexity of hippocampal subfields, automatic segmentation merely on the content of MR images is extremely difficult. We presented a method which combines multi-atlas image segmentation with extreme learning machine based bias detection and correction technique to achieve a fully automatic segmentation of hippocampal subfields. Symmetric diffeomorphic registration driven by symmetric mutual information energy was implemented in atlas registration, which allows multi-modal image registration and accelerates execution time. An exponential function based label fusion strategy was proposed for the normalized similarity measure case in segmentation combination, which yields better combination accuracy. The test results show that this method is effective, especially for the larger subfields with an overlap of more than 80%, which is competitive with the current methods and is of potential clinical significance.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与设计》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团
  • 主办单位:中国航天科工集团二院706所
  • 主编:汤铭瑞
  • 地址:北京142信箱37分箱
  • 邮编:100854
  • 邮箱:ced@china-ced.com
  • 电话:010-68389884
  • 国际标准刊号:ISSN:1000-7024
  • 国内统一刊号:ISSN:11-1775/TP
  • 邮发代号:82-425
  • 获奖情况:
  • 中国科学引文数据库来源期刊,中国学术期刊综合评价数据库来源期刊,中国科技论文统计与分析用期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:45616