位置:成果数据库 > 期刊 > 期刊详情页
基于ELM模型的浅层地下水位埋深时空分布预测
  • ISSN号:1000-1298
  • 期刊名称:《农业机械学报》
  • 时间:0
  • 分类:P641[天文地球—地质矿产勘探;天文地球—地质学]
  • 作者机构:[1]昆明理工大学现代农业工程学院,昆明650500, [2]长沙理工大学水利工程学院,长沙410114, [3]中国农业科学院农业环境与可持续发展研究所,北京100081, [4]作物高效用水与抗灾减损国家工程实验室,北京100081, [5]宁乡县水利水电勘测设计院,长沙410004
  • 相关基金:中国农业科学院“华北节水保粮协同创新行动”项目(CAAS-XTCX2016019); 国家自然科学基金项目(51379024); 中央高校基本科研业务费项目(51679243); “十二五”国家科技支撑计划项目(2012BAD09B01、2015BAD24B01)
中文摘要:

选用石家庄平原区补排因子的多种组合为输入参数,利用28眼水井的实测资料作为预测目标值,首次建立基于极限学习机(Extreme learning machine,ELM)的地下水位埋深时空分布预测模型,讨论补排因子在不同缺失情况下对模型精度的影响;利用Arc GIS分析误差空间分布趋势,并与常用的三隐层BP神经网络模型进行对比。结果表明:基于水均衡理论的ELM地下水位埋深模拟模型能够准确反映人类和自然双重影响下地下水系统的非线性关系,模型输入因子中缺失降水量或开采量的模拟结果均方根误差(RMSE)比缺失其余因子的RMSE高2.00倍及以上,同时模型有效系数(E_(ns))和决定系数(R~2)进一步降低;与BP模型相比,ELM模型可使RMSE减小43.6%,误差区间降低46.4%,Ens和R2提高至0.99,且RMSE在空间相同区域上均明显呈现出ELM模型小于BP模型;ELM模型在南部高误差区的移植精度(RMSE低于1.82 m/a,E_(ns)高于0.95)高于BP模型(RMSE超过3.00 m/a,Ens低于0.85);因此,影响地下水位埋深的主导因素是降水量和开采量,且ELM模型在精度、稳定性和空间均匀性上较优,移植预测效果较好,可利用已知资料推求区域空间内其余未知水井的浅层地下水位埋深;该模型可作为水文地质参数及补排资料缺乏条件下浅层地下水位埋深预测的推荐模型。

英文摘要:

In order to achieve high-precision prediction of temporal and spatial distribution of the groundwater level in shallow groundwater cones region,a model was constructed firstly based on extreme learning machine( ELM). By choosing different combination factors of groundwater recharge and discharge as the input parameters of model and observing data of 28 wells as predicted target in Shijiazhuang plain,the error of spatial distribution trend was analyzed by using Arc GIS software. The results showed that the ELM model based on the water balance theory could accurately reflect the nonlinear relationship of groundwater system under the influence of human and nature activity. The root mean square error( RMSE) of model under the condition without exploitation or precipitation as input factor was two times higher than that under the condition without other factors,and the coefficient of efficiency( Ens) and coefficient of determination( R2) were further reduced. Compared with the BP model,the RMSE of ELM model was reduced by 43. 6%,and the scope of error was reduced by 46. 4%. Ensand R2 were improved to 0. 99. The tendency of error distribution showed that it was decreased from the south and southeast to the central. The RMSE of ELM model was obviously lower than that of BP model in all the regions. The accuracy of ELM model( RMSE was less than 1. 82 m,Enswas higher than 0. 95) was higher than that of BP model( RMSE was more than 3. 00 m,Enswas less than 0. 85) in southern high error region. Therefore,exploitation and precipitation were the main impact factors on the groundwater dynamic in the model. Meanwhile,the stability,accuracy and space uniformity of ELM model were better than those of BP model. And the transplantation results of ELM model were more satisfactory. The model could be used to forecast groundwater level of other unknown wells based on given data. Therefore,the ELM model could be used as a recommended model for predicting groundwater level under conditions of missing hydrogeologi

同期刊论文项目
同项目期刊论文
期刊信息
  • 《农业机械学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国农业机械学会 中国农业机械化科学研究院
  • 主编:任露泉
  • 地址:北京德胜门外北沙滩一号6号信箱
  • 邮编:100083
  • 邮箱:njxb@caams.org.cn
  • 电话:010-64882610 64867367
  • 国际标准刊号:ISSN:1000-1298
  • 国内统一刊号:ISSN:11-1964/S
  • 邮发代号:2-363
  • 获奖情况:
  • 荣获中国科协优秀期刊二等奖,1997~2000年连续4年获中国科协择优资金,被列入中国期刊方阵,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),英国农业与生物科学研究中心文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:42884