欢迎您!
东篱公司
退出
申报数据库
申报指南
立项数据库
成果数据库
期刊论文
会议论文
著 作
专 利
项目获奖数据库
位置:
成果数据库
>
期刊
> 期刊详情页
Perturbation bounds for the periodic Schur decomposition
ISSN号:0006-3835
期刊名称:Bit Numerical Mathematics
时间:0
页码:41-58
相关项目:基因概率布尔网络模型的数值分析
作者:
Chen XS|
同期刊论文项目
基因概率布尔网络模型的数值分析
期刊论文 30
会议论文 5
获奖 1
同项目期刊论文
The coninvolutory decomposition and its computation for a complex matrix
Generating probabilistic Boolean networks from a prescribed stationary distribution
A backward error for the inverse singular value problem
An alternating preconditioner for saddle point problems
Construction of Probabilistic Boolean Networks from a Prescribed Transition Probability Matrix: A Ma
Perturbation analysis for the sign functions of regular matrix pairs
子矩阵约束下的埃尔米特广义反汉密尔顿矩阵特征值反问题及其最佳逼近
Additive and multiplicative perturbation bounds for the Moore-Penrose inverse
A note for preconditioning nonsymmetric matrices
A weighted q-gram method for glycan structure classification
The alternating-direction iterative method for saddle point problems
Backward errors for eigenproblem of two kinds of structured matrices
new multiple regression approach for the construction of genetic regulatory networks
Sensitivity analysis for the generalized singular value decomposition
Distribution and enumeration of attractors in probabilistic Boolean networks
Generating probabilistic Boolean networks from a prescribed transition probability matrix
On computation of the steady-state probability distribution of probabilistic Boolean networks with g
Perturbation analysis for antitriangular Schur decompositions
Structured backward errors for generalized saddle point systems
Some new two-sided bounds for determinants of diagonally dominant matrices
On the construction of sparse probabilitic Boolean networks
A Hoffman–Wielandt-type residual bound for generalized eigenvalues of a definite pair
A new Bramble-Pasciak-like preconditioner for saddle point problems
反对称偏对称矩阵反问题的最小二乘解
On Multivariate Markov Chains for Common and Non-Common Objects in Multiple Networks
MODELING GENETIC REGULATORY NETWORKS: A DELAY DISCRETE DYNAMICAL MODEL APPROACH
SOME RESIDUAL BOUNDS FOR APPROXIMATE EIGENVALUES AND APPROXIMATE EIGENSPACES