^40Ar/^39Ar定年中,存在一些使用传统的大样逐步升温技术难以处理的难题,如变质及沉积岩样品常含有多期次矿物而难以获得理想结果,过剩Ar在样品中的分布以及来源问题一直难以有效解决,根据缓慢冷却钾长石的^40Ar/^39Ar年龄谱提出的热演化模型也因为Ar在矿物中扩散机制的不明确性而不断受到质疑.20世纪90年代将紫外激光(UV-laser)成功引入^40Ar/^39Ar年代学分析后,为解决这些难题提供了一种思路.借助激光微区^40Ar/^39Ar定年技术,我们可以直接测定不同期次矿物的年龄,从而将年代与样品组分、结构构造等信息结合起来研究造山、断裂带、变质或者岩浆活动等地质演化过程,为人们更准确地认识地质历史打开了一扇窗;同时还能够直观地观察到矿物内部微米级别上Ar同位素分布的差异,为研究Ar扩散机制、过剩Ar在样品中的分布提供更直观的证据,在极大地推动了^40Ar/^39Ar方法学应用的同时,也为基础理论研究的发展以及更合理地构建地质模型做出了很大贡献.
In ^40Ar/^39Ar dating,there are some purposes that step heating technical can not reached.Such as in dating metamorphic rocks,it is hard to pick up pure sample if several generation minerals existed,or what is the excess 40Ar distribution and where are they come from,or how to resolve the argumentation about the MDD molding with the Ar diffusion mechanism in silicate obscurely.High spatial resolution laser ^40Ar/^39Ar dating technique is a unique tool to probe Ar distribution of micron size in minerals directly.Using this technique,We can see the vibration of Ar isotope in minerals directly without separated mineral,and can get the Ar distribution information in minerals which is very powerful evidence for explain the Ar diffusion mechanism.It helps us to understand tectonic process and mold our aging data more exactly.Anyway,UVLaser ^40Ar/^39Ar dating will be more and more important in the future.