采用溶剂热法合成了可见光响应的TiO2/g-C3N4复合光催化剂,并对TiO2/g—C3N4进行质子化处理。通过X射线衍射(XRD)、氮气吸附-脱附BET法、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶红外光谱(FT—IR)、紫外-可见漫反射(UV—vis DRS)和荧光光谱(PL)等方法对样品进行了表征,并以甲基橙(MO)光催化降解为模型反应,考察了可见光下制备的样品的光催化性能。结果表明,多孔TiO2纳米晶与g—C3N4形成具有“芝麻饼”形貌的复合结构;TiO2/g—C3N4复合光催化剂的光吸收带边扩展到465nm,较TiO2出现明显红移;TiO2与g—C3N4能带匹配耦合,有效地抑制了电子与空穴的复合;质子化处理过程能够提高可见光区吸收强度和电子的传导能力,增强了TiO2的光催化活性。
TiO2/g-CaN4 composite photocatalyst with visible-light response was synthesized by the solvothermal method, and then the as-synthesized photocatalyst was protonated. The samples were characterized by X-ray diffraction(XRD), nitrogen absorption-desorption, scanning electron microscope(SEM), transmission electron microsope(TEM), Fourier transform infrared spectrometer (FT-IR), UV-vis diffuse reflect spectroscope (UV-vis DRS) and photoluminescence spectra (PL). The photocatalytic performance of the TiO2/g-CaN4 was evaluated by the degradation of methylene orange (MO) under the visible light. The results show that porous Ti()2 nanocrystalline and g-C_~ N~ are able to form "sesame cake" composite structure. The absorption edge of TiO2 / g-CaN4 photocatalyst expands to 465 nm, which appears remarkable red shift compared with TiOz. The coupling of TiO2 and g-C3N4 with suitably matching band level of conduction and valance bands provides TiO2/g-C3N4 photocatalyst with the driving forces to separate and transfer photogenerated electron-hole pairs. The protonation process can improve the absorption of visible light, increase electronic transfer ability and enhance the TiO2/g-C3N4 photocatalyst activity.