该文针对K平面聚类算法KPC(K-Plane Clustering)对噪声点敏感的缺陷,通过引入隶属度约束函数,推导出鲁棒的改进分割K平面聚类算法IFP—KPC(Improved Fuzzy Partitions for K—Plane Clustering),并利用Voronoi距离对IFP—KPC算法的鲁棒性进行了合理解释。实验结果表明IFP—KPC算法较之于KPC算法具有更好的聚类效果。
A new robust Improved Fuzzy Partitions for K-Plane Clustering (IFP-KPC) algorithm is proposed. The proposed algorithm can reduce the sensitivity of the k-plane clustering algorithm to noises in real datasets. Also the distances to the Voronoi cell are used to give a reasonable explanation for the robustness of IFP-KPC. Experimental results demonstrate the effectiveness of IFP-KPC.