位置:成果数据库 > 期刊 > 期刊详情页
用于图像恢复的基于SVR的自适应新滤波器的研究
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程] TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京理工大学计算机科学与工程系,江苏南京210094, [2]江南大学信息工程学院,浙江无锡214122
  • 相关基金:国家自然科学基金资助项目(60225015);江苏省自然科学基金项目(BK2003017);南京大学软件新技术国家重点实验室开放课题和江苏计算机技术重点实验室开放课题资助
中文摘要:

提出了一种用SVR回归器识别脉冲噪声的思想,并将其应用于图像滤波和恢复,形成了用于对脉冲噪声进行滤波的SVR自适应滤波器。这种滤波器在滤波时,先用SVR对待识别像素作噪声识别,再对含噪声的像素作中值滤波。用SVR作噪声识别时,先对滤波窗口作SVR回归,通过待识别像素回归距的大小判断其是否含有噪声。在进行SVR回归时,使用鲁棒的Huber损失函数。由于更充分地利用了待识别像素点的局部背景信息,这种滤波器提高了脉冲噪声识别的正确率。实验表明,在保留原图像的细节信息方面,其滤波效果要优于基于SVC的中值滤波器。

英文摘要:

In this paper, a novel adaptive filter based on support vector regression is proposed, which can effectively be used to suppress impulse noise in images. The main idea of our filter is to use SVR impulse detector to judge whether an input pixel is noised. If it is noised, we remove its noise by a median filter. When detecting an input pixel, we regress the filer window of an input pixel using SVR, then judge the input pixel by its regression distance. In SVR regression, we use the Huber loss function due to its excellent robustness. Compared with the latest SVC approach, our filter can preserve more image details while effectively suppressing impulse noise for image restoration. Experimental results indicates the success of our filter.

同期刊论文项目
期刊论文 83 会议论文 38 著作 5
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049