原子力量显微镜学(AFM ) 的发明为测量特定的分子的相互作用力量提供了新技术。使用的 AFM 单个分子的力量光谱学(SMFS ) 技术, CD20-Rituximab 破裂力量在净化的 CD20 蛋白质, Raji 房间,和淋巴瘤病人 B 房间上被测量。Rituximab 分子用 AFM 探查 functionalization 技术被连接到 AFM 尖端上,并且净化了 CD20 蛋白质用底层 functionalization 技术被纳入云母。Raji 房间(一根淋巴瘤房间线) 或淋巴瘤病人房间经由静电的吸附和化学固定在玻璃底层上被使不能调动。净化的 CD20 蛋白质, Raji 房间,和耐心的淋巴瘤房间的地形学在破裂力量用 AFM 成像和差别被设想被分析并且测量。结果证明在 Raji 房间和 Rituximab 上的 CD20 蛋白质之间的破裂力量在淋巴瘤病人 B 房间上是比为净化的 CD20 蛋白质和 CD20 蛋白质的那些显著地小的。这些调查结果为调查位于 Rituximab 的可变功效下面的机制提供一个有效试验性的方法。
The invention of atomic force microscopy (AFM) has provided new technology for measuring specific molecular interaction forces. Using AFM single-molecule force spectroscopy (SMFS) techniques, CD20-Rituximab rupture forces were measured on purified CD20 proteins, Raji cells, and lymphoma patient B cells. Rituximab molecules were linked onto AFM tips using AFM probe functionalization technology, and purified CD20 proteins were attached to mica using substrate functionalization technology. Raji cells (a lymphoma cell line) or lymphoma patient cells were immobilized on a glass substrate via electrostatic adsorption and chemical fixation. The topography of the purified CD20 proteins, Raji cells, and patient lymphoma cells was visualized using AFM imaging and the differences in the rupture forces were analyzed and measured. The results showed that the rupture forces between the CD20 proteins on Raji cells and Rituximab were markedly smaller than those for purified CD20 proteins and CD20 proteins on lymphoma patient B cells. These findings provide an effective experimental method for investigating the mechanisms underlying the variable efficacy of Rituximab.