This paper describes the effects of non-equilibrium air plasma generated by a dielectric barrier discharge (DBD) on the combustion of low heating value fuels. The experimental results indicate that addition of a very small amount of energy to the air flow in the form of DBD significantly improves the flame stability. Moreover, main combustion characteristics such as flame propagation speed, combustion intensity and lean blow-off limits are also enhanced by the effect of plasma. Some active radicals such as excited O atom and excited N2 molecule are observed by spectrograph in the discharge area. Based on the results of numerical investigation we can conclude that these active radicals generated in discharge area can accelerate the production rate of active OH radical which plays a key role in the oxidation process of low heating value fuel, and thus the whole combustion process is accelerated.
This paper describes the effects of non-equilibrium air plasma generated by a dielectric barrier discharge (DBD) on the combustion of low heating value fuels. The experimental results indicate that addition of a very small amount of energy to the air flow in the form of DBD significantly improves the flame stability. Moreover, main combustion characteristics such as flame propagation speed, combustion intensity and lean blow-off limits are also enhanced by the effect of plasma. Some active radicals such as excited O atom and excited N2 molecule are observed by spectrograph in the discharge area. Based on the results of numerical investigation we can conclude that these active radicals generated in discharge area can accelerate the production rate of active OH radical which plays a key role in the oxidation process of low heating value fuel, and thus the whole combustion process is accelerated.