设X={X(t),t∈R+}是取值R^d上的,指数为对角矩阵的算子稳定过程.文章将探讨X的图集的Hausdorff测度问题.更确切地,利用逗留时得到了图集G([0,1])={(t,X(t)):0≤t≤1}的确切Hausdorff测度函数.这一结果推广了已有文献中类似的结果.
Let X= {X(t),t∈R+ } be an operator stable L'evy process on R^d with exponent B, where B is a diagonal matrix. Using the sojourn time, the paper determine a Hausdorff measure function Ф(a) such that the graph G[0,1]= { (t, X(t)) : 0≤t≤l} has positive finite Ф-measure. The result improve the results of the related reference.