位置:成果数据库 > 期刊 > 期刊详情页
基于小波变换与图割的彩色图像分割方法
  • ISSN号:1000-1220
  • 期刊名称:《小型微型计算机系统》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京审计学院信息与科学学院,南京210029, [2]南京理工大学计算机科学与技术学院,南京210094
  • 相关基金:国家自然科学基金项目(60805003)资助
中文摘要:

为提高图割算法的分割效率与质量并改善shrinking bias现象,提出将图割理论与小波变换相结合的方法.该方法利用小波变换多分辨率分析的特点,将变换中的低频子带图像作为估计GMM参数的训练样本进行多尺度迭代分割,提高算法效率,利用简单高效的CS_LBP纹理描述子提取高频子带图像中的纹理信息,将颜色与纹理特征相结合改善分割效果,并利用高频系数进行多尺度边缘检测,用于计算局部自适应的正则化参数,改善对细长边界的分割.实验结果表明,分割效果得到了改善,算法效率得到了提高.

英文摘要:

To improve the efficiency, effect and shrinking bias phenomena of graph cuts algorithm, an approach of combing graph cuts algorithm and wavelet transform is proposed in this paper. By using the character of wavelet multi-resolution analysis, the low-frequency sub-band images of wavelet transform are used as training samples to estimate GMM parameters with multi-scale iterative segmentation efficiently, texture features which are extracted from high frequency sub-band images by using simple and efficient CSLBP texture descriptor are combined with color features to improve the segmentation effect and high-frequency coefficients are used to detect multiscale edges. The local adaptive regularization parameter is calculated with the edge probability map to improve the thin boundary image segmentation. The experiments show that segmentation result has been improved and the efficiency of the algorithm has been improved significantly.

同期刊论文项目
期刊论文 23 会议论文 4 专利 1
同项目期刊论文
期刊信息
  • 《小型微型计算机系统》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院沈阳计算技术研究所
  • 主编:林浒
  • 地址:沈阳市浑南新区南屏东路16号
  • 邮编:110168
  • 邮箱:xwjxt@sict.ac.cn
  • 电话:024-24696120 024-24696190-8870
  • 国际标准刊号:ISSN:1000-1220
  • 国内统一刊号:ISSN:21-1106/TP
  • 邮发代号:8-108
  • 获奖情况:
  • 中国自然科学核心期刊,中国科学引文数据库来源期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:23212