位置:成果数据库 > 期刊 > 期刊详情页
各向异性权重的模糊C均值聚类图像分割
  • ISSN号:1003-9775
  • 期刊名称:计算机辅助设计与图形学学报
  • 时间:0
  • 页码:1451-1466
  • 语言:中文
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京理工大学计算机科学与技术学院,南京210094
  • 相关基金:国家自然科学基金(60805003,60773172);江苏省自然科学基金(BK2008411);江苏省博士后基金(AD41158).
  • 相关项目:相关投影分析在特征抽取中的理论和算法研究
中文摘要:

传统的模糊C均值聚类算法(FCM)在图像分割中未考虑各个点的灰度特征及其邻域像素的关联程度,导致其对于噪声十分敏感.而各种改进算法虽然较好地克服了图像噪声的影响,但由于使用均值滤波等方法导致分割图像边缘模糊.为此,提出一种基于各向异性权重的FCM图像分割方法,通过引入新的邻域窗口权重的计算方法,使得中心点邻域内各点具有各向异性的权重;并使用基于灰度级的快速算法,提出了各向异性权重的模糊C均值聚类算法.实验结果表明,文中方法具有较强的抗噪性,对于噪声具有良好的稳定性,分割精度较高.

英文摘要:

Since it does not take into account the image characteristics as well as the correlation of neighbor pixels, the standard fuzzy C-means (FCM) is very sensitive to noise. Although some improved methods blurred due to the we propose each pixel algorithm property, a new in the do possess the anti-noise property, their resultant edges of segmentation may be use of low-pass filters, such as the averaged filter. To overcome these drawbacks, FCM based image segmentation method where an anisotropic weight is assigned to neighborhood. In addition, a fast anisotropic weighted fuzzy C-means clustering is also proposed. The experimental results show that our method has the stronger anti-noise better robustness to various noises and higher segmentation accuracy.

同期刊论文项目
期刊论文 23 会议论文 4 专利 1
同项目期刊论文
期刊信息
  • 《计算机辅助设计与图形学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国计算机学会
  • 主编:鲍虎军
  • 地址:北京2704信箱
  • 邮编:100190
  • 邮箱:jcad@ict.ac.cn
  • 电话:010-62562491
  • 国际标准刊号:ISSN:1003-9775
  • 国内统一刊号:ISSN:11-2925/TP
  • 邮发代号:82-456
  • 获奖情况:
  • 第三届国家期刊奖提名奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:24752