位置:成果数据库 > 期刊 > 期刊详情页
两相邻带参四次Bézier曲线的近似合并
  • 期刊名称:计算机工程与应用
  • 时间:0
  • 页码:160-163
  • 语言:中文
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西安理工大学理学院,西安710054
  • 相关基金:基金项目:国家自然科学基金(the National Natural Science Foundation of China under Grant No.50879069);陕西省教育厅自然科学研究项目(No.08JK399).
  • 相关项目:浑水渗流理论及其工程应用研究
中文摘要:

给出了带有4个形状参数的5次多项式基函数,分析了这组基函数的性质,并由此基函数构造了带4个形状控制参数的四次扩展Bézier曲线(简称QE-Bézier曲线)。QE-Bézier曲线是对四次Bézier曲线的扩展,它不仅具有与四次Bézier曲线类似的性质,而且具有灵活的形状可调性和更好的逼近性。进一步研究了两相邻QE-Bézier曲线的合并问题,通过曲线拟合方法与广义逆矩阵理论相结合,直接得到了合并曲线控制顶点的显示表达式,并给出了误差分析,数值实例显示逼近效果较好。

英文摘要:

A class of polynomial basis function of 5th degree with four shape control parameters is presented.It is an exten- sion of cubic Bernstein basis functions.Properties of the basis function are analyzed and the corresponding polynomial curve with four sharp parameters is defined.QE-Bézier curve is extension of quartic Bézier curve,so the QE-Bézier curve not only inherits the outstanding properties of the quartic Bézier curve,but also is adjustable in sharp and fit close to the control polygon.The question about approximate merging a pair of QE-Bézier is researched.The explicit formula of control points of the merged QE-Bézier curve can be given directly by combining the fitting method of curves with the theory of general in- verse matrix and the error is given.Finally,the examples are presented,which show the effectiveness of the presented method

同期刊论文项目
同项目期刊论文