文章证明了方程det(δ^2u/δξiδξj)=exp|-∞∑i=1 di δu/δξi -d0|(其中d0,d1,…,dn是常数)的任何光滑严格凸的定义在整个R^n的解一定是二次多项式,推广了著名的Jrgens-Calabi-Pogorelov定理.
It is shown that any smooth strictly convex global solution on R^n of det(δ^2u/δξiδξj)=exp|-∞∑i=1 di δu/δξi -d0|, where d0, d 1,……, dn are constants, must be a quadratic polynomial. This extends a well-known theorem of Jorgens-Calabi-Pogorelov.