设X:M→R^n+1是凸域Ω R^N上的严格凸函数Xn+1=f(x1,…,xn)定义的一个局部强凸超曲面.如果f是下面方程的解,则称M为α相对极值超曲面:△ρ=2-nα/2||ρ||^2/ρ,ρ:=(det( ))^-1/n+2.2007年,贾和李证明了存在一个仅依赖于维数n的正常数K(n),如果|α|≥K(n),那么欧氏完备的a相对极值超曲面是椭圆抛物面.本文中我们利用Calabi度量给出了这个定理的一个简单证明.
Let X:M→R^n+1 be a locally strongly convex hypersurface, given by the graph of a strictly convex function Xn+1=f(x1,…,xn) defined on a convex domain Ω R^N. M is called an a relative extremal hypersurface, if f is a solution of △ρ=2-nα/2||ρ||^2/ρ,ρ:=(det( ))^-1/n+2 ,where △ and ||·|| denote the Laplacian and tensor norm with respect to the Calabi metric, respectively. In 2007, Jia and Li proved that Euclidean complete a relative extremal hypersurface must be an elliptic paraboloid for |α|≥K(n), where K(n) is a positive constant depending only on the dimension n. Here we will use the Calabi metric to give a relatively simple proof.