位置:成果数据库 > 期刊 > 期刊详情页
HERMITE WENO SCHEMES WITH STRONG STABILITY PRESERVING MULTI-STEP TEMPORAL DISCRETIZATION METHODS FOR CONSERVATION LAWS
  • ISSN号:0254-9409
  • 期刊名称:《计算数学:英文版》
  • 时间:0
  • 分类:O151.21[理学—数学;理学—基础数学] V211.3[航空宇航科学与技术—航空宇航推进理论与工程;航空宇航科学技术]
  • 作者机构:[1]School of Mathematical Sciences, Xiamen University, Xiamen, Fujian, 361005, China, [2]College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China, [3]School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computation, Xiamen University, Xiamen, Fujian 361005, China
  • 相关基金:Acknowledgments. The research is partly supported by NSFC grants 11372005, 11571290 and 91530107.
中文摘要:

基于 Shu 的工作

英文摘要:

Based on the work of Shu [SIAM J. Sci. Stat. Comput, 9 (1988), pp.1073-1084], we construct a class of high order multi-step temporal discretization procedure for finite volume Hermite weighted essential non-oscillatory (HWENO) methods to solve hyperbolic conservation laws. The key feature of the multi-step temporal discretization procedure is to use variable time step with strong stability preserving (SSP). The multi-step tem- poral discretization methods can make full use of computed information with HWENO spatial discretization by holding the former computational values. Extensive numerical experiments are presented to demonstrate that the finite volume HWENO schemes with multi-step diseretization can achieve high order accuracy and maintain non-oscillatory properties near discontinuous region of the solution.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算数学:英文版》
  • 主管单位:
  • 主办单位:中国科学院数学与系统科学研究院
  • 主编:
  • 地址:北京2719信箱
  • 邮编:100080
  • 邮箱:
  • 电话:
  • 国际标准刊号:ISSN:0254-9409
  • 国内统一刊号:ISSN:11-2126/O1
  • 邮发代号:
  • 获奖情况:
  • 中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库
  • 被引量:193