位置:成果数据库 > 期刊 > 期刊详情页
求解大尺度优化问题的学生t-分布估计算法
  • ISSN号:1000-1239
  • 期刊名称:《计算机研究与发展》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]武汉大学计算机学院,武汉430072, [2]南阳理工学院软件学院,河南南阳473000, [3]岩土力学与工程国家重点实验室(中国科学院武汉岩土力学研究所),武汉430071
  • 相关基金:国家自然科学基金项目(61170305,61672024,41472288);河南省高等学校重点科研项目计划(17A520046)
中文摘要:

针对处理大尺度全局优化问题,提出一种基于自适应t-分布的分布估计算法(EDA-t).该算法不仅求解效果良好,而且求解速度也比同类型算法快.其基本思想是:在迭代搜索过程,首先利用期望最大化算法对演化种群进行概率主成分分析,然后根据得到的概率隐变量建立算法的概率模型,并通过t-分布自由度自适应方法,在算法收敛停滞时跳出局部最优.由于在构建模型时进行了数据降维,在不影响算法求解精度的前提下,其计算开销得到了明显降低.通过和目前主流的演化算法在大尺度优化测试函数上的仿真实验和分析,验证了所提算法的有效性和适用性.

英文摘要:

In this paper,an adaptive estimation of student's t-distribution algorithm(EDA-t)is proposed to deal with the large-scale global optimization problems.The proposed algorithm can not only obtain optimal solution with high precision,but also run faster than EDA and their variants.In order to reduce the number of the parameters in student's t-distribution,we adapt its closed-form in latent space to replace it,and use the expectation maximization algorithm to estimate its parameters.To escape from local optimum,a new strategy adaptively tune the degree of freedom in the tdistribution is also proposed.As we introduce the technology of latent variable,the computational cost in EDA-t significantly decreases while the quality of solution can be guaranteed. The experimental results show that the performance of EDA-t is super than or equal to the state-of-the-art evolutionary algorithms for solving the large scale optimization problems.

同期刊论文项目
期刊论文 28 会议论文 15
同项目期刊论文
期刊信息
  • 《计算机研究与发展》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院计算技术研究所
  • 主编:徐志伟
  • 地址:北京市科学院南路6号中科院计算所
  • 邮编:100190
  • 邮箱:crad@ict.ac.cn
  • 电话:010-62620696 62600350
  • 国际标准刊号:ISSN:1000-1239
  • 国内统一刊号:ISSN:11-1777/TP
  • 邮发代号:2-654
  • 获奖情况:
  • 2001-2007百种中国杰出学术期刊,2008中国精品科...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:40349