位置:成果数据库 > 期刊 > 期刊详情页
Training Robust Support Vector Machine Based on a New Loss Function
  • ISSN号:1672-5220
  • 期刊名称:东华大学学报(英文版)
  • 时间:2015.4.1
  • 页码:261-263
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]School of Mathematics and Statistics, Henan University of Science & Technology, Luoyang 471003, China
  • 相关基金:National Natural Science Foundations of China (Nos. 61272015, 11201123 ) ; the Scientific Research Foundation for the Doctor of Henan University of Science &Technology, China (No. 09001476) ; School Foundation of Hcnan University of Science &Technology, China ( No. 2012QN011 )
  • 相关项目:保险投资组合随机模型中风险控制及优化分红问题的研究
作者: 刘叶青|
中文摘要:

To reduce the influences of outliers on support vector machine(SVM) classification problem,a new tangent loss function was constructed.Since the tangent loss function was not smooth in some interval,a smoothing function was used to approximate it in this interval.According to this loss function,the corresponding tangent SVM(TSVM) was got.The experimental results show that TSVM is less sensitive to outliers than SVM.So the proposed new loss function and TSVM are both effective.

英文摘要:

To reduce the influences of outliers on support vector machine(SVM) classification problem,a new tangent loss function was constructed.Since the tangent loss function was not smooth in some interval,a smoothing function was used to approximate it in this interval.According to this loss function,the corresponding tangent SVM(TSVM) was got.The experimental results show that TSVM is less sensitive to outliers than SVM.So the proposed new loss function and TSVM are both effective.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《东华大学学报:英文版》
  • 主管单位:国家教育部
  • 主办单位:东华大学
  • 主编:
  • 地址:上海延安路西1882
  • 邮编:200051
  • 邮箱:xuebao@dhu.edu.cn
  • 电话:021-62373948
  • 国际标准刊号:ISSN:1672-5220
  • 国内统一刊号:ISSN:31-1920/N
  • 邮发代号:
  • 获奖情况:
  • EI、CA等收录
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,英国科学文摘数据库,英国世界纺织文摘
  • 被引量:130