We systematically investigate the optical properties of the InP1-xBix ternary alloys with 0≤x≤2.46%,by using high resolution polarized Raman scattering measurement.Both InP-like and InBi-like optical vibration modes(LO) are identified in all the samples,suggesting that most of the Bi-atoms are incorporated into the lattice sites to substitute Patoms.And the intensity of the InBi-like Raman mode is positively proportional to the Bi-content.Linear red-shift of the InP-like longitudinal optical vibration mode is observed to be 1.1 cm-1/Bi%,while that of the InP-like optical vibration overtone(2LO) is nearly doubled.In addition,through comparing the(XX) and Z(XY) Raman spectra,longitudinaloptical-plasmon-coupled(LOPC) modes are identified in all the samples,and their intensities are found to be proportional to the electron concentrations.
We systematically investigate the optical properties of the InP1-xBix ternary alloys with 0≤x≤2.46%,by using high resolution polarized Raman scattering measurement.Both InP-like and InBi-like optical vibration modes(LO) are identified in all the samples,suggesting that most of the Bi-atoms are incorporated into the lattice sites to substitute Patoms.And the intensity of the InBi-like Raman mode is positively proportional to the Bi-content.Linear red-shift of the InP-like longitudinal optical vibration mode is observed to be 1.1 cm-1/Bi%,while that of the InP-like optical vibration overtone(2LO) is nearly doubled.In addition,through comparing the(XX) and Z(XY) Raman spectra,longitudinaloptical-plasmon-coupled(LOPC) modes are identified in all the samples,and their intensities are found to be proportional to the electron concentrations.