文中探讨了矩阵函数值的计算问题.证明了:若f(z)是复平面C上的整函数,A={aij}∈Cnxn||A||为相容矩阵范数,L是一半径充分大的圆周(半径r≥||A||),(ζI-A)^-1={bij(ζ)},则有f(A)={1/2πi∫Lf(ξ)by(ξ)dξ}。依据该结论,文中给出了利用留数来计算矩阵函数值的新方法。
This paper discusses the calculation problem of matrix function value. It is proved that iff (z) is an entire function on the complex plane C, A={aij}∈Cnxn||A|| is the compatible norm, L is a circle for which the radius is large enough(rr≥||A||),(ζI-A)^-1={bij(ζ)},than f(A)={1/2πi∫Lf(ξ)by(ξ)dξ} holds. According to this formula, it presents a new cheaper method to calculate matrix function value by using residue theorem