位置:成果数据库 > 期刊 > 期刊详情页
基于稀疏表示模型的图像解码方法
  • ISSN号:0254-0037
  • 期刊名称:北京工业大学学报
  • 时间:2013.3.10
  • 页码:420-424
  • 分类:TP309[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京工业大学计算机学院,北京100124
  • 相关基金:国家自然科学基金资助项目(61170103);北京市自然科学基金资助项目(4102009).
  • 相关项目:基于低秩表示的图像视频编码方法研究
中文摘要:

为了更好地提取图像信号的稀疏特性,提出了一种多方向自回归稀疏模型及其重建算法.多方向自回归稀疏模型利用图像局部统计相关和纹理方向实现了图像稀疏表示.在基于变换的编码框架下,以编码端的变换矩阵为观测矩阵,用多方向自回归稀疏模型代替解码端的反变换.图像仿真结果表明,所提出的技术能改善JPEG图像的质量.

英文摘要:

To obtain the sparse property of signals better, a mliti-directional adaptive sparse model and recovery algorithm for it in compressive sensing were proposed. The mliti-direetional autoregressive model could use the local statistical correlation and texture directions of image to represent signal sparsely. In a transform based codec framework, the transform matrix was regarded as a measurement matrix. The traditiohal inverse transform in decoder is replaced by the muhidirectional adaptive sparse model. Simulation results over a wide range of images show that the proposed technique can improve the reconstruction quality of JPEG.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《北京工业大学学报》
  • 中国科技核心期刊
  • 主管单位:北京市教委
  • 主办单位:北京工业大学
  • 主编:卢振洋
  • 地址:北京市朝阳区平乐园100号
  • 邮编:100124
  • 邮箱:xuebao@bjut.edu.cn
  • 电话:010-67392535
  • 国际标准刊号:ISSN:0254-0037
  • 国内统一刊号:ISSN:11-2286/T
  • 邮发代号:2-86
  • 获奖情况:
  • 中国高等学校自然科学学报优秀学报二等奖,北京市优秀期刊,华北5省市优秀期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:11924