CO2的地质储存是迅速减少温室气体向大气排放最直接、最有效的方法之一,其封存量受很多因素影响,储层原生矿物组分是其中之一。本文以松辽盆地、美国墨西哥湾、日本Nagaoka场地资料为基础,对CO2矿物封存过程进行数值摸拟。结果表明:原生矿物组成及含量相差不大时,地球化学反应过程相似,原生矿物组成较为复杂时,地球化学反应过程也更复杂;在以石英、长石为主的砂岩储层中,长石和绿泥石是重要的溶解矿物,铁白云石和片钠铝石是主要的固碳矿物;CO2矿物封存量随着原生矿物中奥长石和绿泥石含量增加而增大,其中奥长石的影响更大。以上研究对CO2地质储存储层的选取有指导意义。
Carbon dioxide (CO2) geological storage is one of the most direct and efficient ways to rapidly reduce atmospheric emissions of greenhouse gases. The amount of CO2 trapped in secondary minerals can be influenced by many factors, and the primary mineral composition is an important factor. In this paper, we simulated the mineral trapping process using mineralogical data in the Songliao Basin, the United States Gulf Coast and the Japanese Nagaoka formation. The results indicate that a similar rock type has the similar geochemical reactions, and the more complex the primary mineral composition, the more complex the reactions. Feldspar and chlorite are the major dissolved minerals, ankerite and dawsonite are the major secondary minerals in sandstone reservoirs. Increase in chlorite and oligoclase, especially oligoclase, may lead to more CO2 mineral trapping. The presented modeling study is useful in guiding the future selection of suitable CO2 storage formations.