面对全球气候变化和能源紧缺的巨大压力,CO2地质利用技术成为研究的焦点。为了实现CO2减排及资源化利用,提出了利用超临界CO2增强卤水提取和地热能开采的CO2地质利用集成系统的概念。通过建立CO2注入热卤水储层的质量平衡模型,分析了不同流量的卤水生产、CO2注入以及储层边界流对储层变化的影响,初步评估了该系统的CO2封存量、卤水提取量以及储层流体组成变化的时间尺度。研究表明,注入CO2提供了热卤水层的压力维持,促进卤水和地热资源的可持续开采,对于江陵凹陷研究区9×10^8 m^3的储层有效体积,注入9.95×10^6 t CO2可提取17.12×10^6 t卤水,时间尺度超过30a。对于50~1 000kg/s的卤水生产速度,可以产生0.9~18.8 MW电力。同时,该技术增加了CO2的封存容量和效率,有利于CO2大规模安全封存,经济和环境效益显著。
Facing the great pressure under global climate change and energy shortage,CO2 geological utilization has become the focus of research.In order to achieve CO2 emission reduction and resource utilization,this study presents a new concept of integrated CO2 geological utilization system that enhances brine extraction and geothermal energy production using supercritical CO2.We establish a mass balance model of CO2 injection into a thermal brine-filled reservoir to analyze the impact of different flows of brine production,CO2 injection and reservoir boundary flows on changes of the reservoir,and preliminary evaluate CO2 storage capacity,the amount of brine extraction and the time scales for reservoir fluid compositional changes within such a system.The results show that with CO2 injection providing pressure support for thermal brine reservoir to maintain the sustainable productivity of brine and geothermal resources.For a reservoir of 9×10^8 m3 in Jiangling Depression,an injection of 9.95 million tons of CO2 would enable extraction of 17.12 million tons of brine,and the time scale is more than 30 years.For brine production rates of 50to1 000kg/s,it could generate 0.9to 18.8 MW of electricity.Furthermore,this technology increases CO2 storage capacity and efficiency that is beneficial for large-scale and safe geological CO2 storage,which can gains economic and environmental benefits.