Bent函数在编码理论、通信领域以及密码学中具有广泛的应用。文章利用二次型理论构造了定义在奇特征域Fpn上的二次Bent函数∑i=1^m/2-1ciTr1^n(βx^1+pei)+cm/2Tr1^n/2(βx1+p^n/2),其中。p是奇素数,ci∈Fp,n=em,且满足m是偶数;给出了这类函数是p-aryBent的充分必要条件。进一步地,当m=2p^vq,v≥0,q是一个奇素数且满足p是模q的原根,给出了这种情况下的此类二次Bent函数的个数。
Bent functions are widely used in the fields of coding theory, communications and cryptog-raphy. This paper constructs a class of quadratic bent functions having the form ∑i=1^m/2-1ciTr1^n(βx^1+pei)+cm/2Tr1^n/2(βx1+p^n/2)for even n with n = em,ci E Fp over the finite field of Fp~ of odd characteristic p by using the theory of quadratic forms over finite fields. Moreover, the necessary and sufficient con- ditions are presented. Further, when m = 2p~q,v 〉I O,q is an odd prime and p a primitive root mod- ulo q. The enumerations of this class of bent functions are also considered.