有限域GF(2’上本原σ-LFSR序列的分量序列均是二元域上具有相同极小多项式的m-序列,已知一条GF(2勺上本原cr-LFSR序列的距离向量,就可以用二元域上的m-序列构造它.研究了一类本原cr-LFSR序列-Z本原σ-LFSR序列距离向量的计算问题.给出了一种GF(2k)上n级Z本原σ-LFSR序列距离向量的计算方法,其主要思想是-并U用GF(2k)上1级z本原σ-LFSR序列的距离向量来计算n级z本原σ-LFSR序列的距离向量与其他现有方法相比,该方法的效率更高.更有价值的是,该方法也适用于GF(2b上n级m.序列距离向量的计算.最后给出了GF(2k)上n级z本原σ-LFSR序列的计数公式,说明其个数比GF(2k)上n级m-序列更多.
The coordinate sequences of a primitive σ-LFSR sequence over GF(2k) are m-sequences with the same minimal polynomial over GF(2), thus a primitive σ-LFSR sequence over GF(2k) can be constructed by m-sequences over GF(2) if its interval vector is known. This paper studies the calculation of interval vectors of a class of primitive σ-LFSR sequences--Z primitive σ-LFSR sequences and presents an improved method to calculate the interval vectors of Z primitive σ-LFSR sequences in order n over GF(2k), which uses the interval vectors of Z primitive σ-LFSR sequences of order 1 to calculate that of Z primitive σ-LFSR sequences in order n over GF(2k). In addition, it is more effective than other existing methods. More importantly, the new method can also be applied to the calculation of interval vectors of m-sequences over GF(2k). The enumeration formula of Z primitive σ-LFSR sequences of order n over GF(2k) is also presented, which shows that the number of Z primitive σ-LFSR sequences of order n is much larger than the number of m-sequences of order n over GF(2k).