位置:成果数据库 > 期刊 > 期刊详情页
基于改进的图像局部区域相似度学习架构的图像特征匹配技术研究
  • ISSN号:0254-4164
  • 期刊名称:《计算机学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国电子科技集团公司第二十研究所电子信息网络实验室,西安710068, [2]南京理工大学机械工程学院,南京210094
  • 相关基金:国家自然科学基金(61104171)资助.
中文摘要:

该文在AdaBoost算法的基础上提出了一种图像局部区域相似度的学习架构,利用该架构训练图像局部特征来获得低维数、独特的特征描述子,以实现对图像局部区域高精度地匹配.所提学习架构通过学习图像局部区域相似性得到一组非线性弱学习器对图像局部特征进行描述;同时,在响应函数组合形式和弱学习器权重优化配置方面,针对浮点描述子和二值描述子分别提出了新的补丁相似性度量函数作为目标函数的核函数,提高了图像特征相似性匹配效果.该学习架构不会受限于任何预定义的图像特征信息采集模式,能产生基于灰度信息或方向梯度信息的特征描述子.实验结果表明采用这种学习架构获得的特征描述子,在所有对比描述子中图像局部匹配查准率是最好的.所提学习框架能有效地配置优化描述子弱学习器,能提高图像特征描述子对图像尺度和视角变化的鲁棒性.

英文摘要:

A learning framework of image patch similarity to learn low-dimensionality and highdiscriminative descriptor based on AdaBoost is proposed.In the framework,the representations of image patches are modeled by non-linear weak learners which are trained by AdaBoost algorithm.Meantime,in the aspect of the response function combination and the weak learners' weight optimization allocation,two new similarity functions for float point descriptor and binary descriptor respectively are proposed to use as kernel function of optimized object function to learn a similarity embedding for improving image feature matching effect.The proposed learning framework is more generalizing than others as it won't be restricted to any predefined featuresampling model and it could encompasses intensity and director-gradient information.The results show that the proposed feature descriptor outperforms overall comparing descriptors on recallprecision performance of image local area matching.The proposed learning framework is able to effectively optimize over the descriptor filter configuration leads to boost robustness to image scale and perspective changes.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国计算机学会 中国科学院计算技术研究所
  • 主编:孙凝晖
  • 地址:北京中关村科学院南路6号
  • 邮编:100190
  • 邮箱:cjc@ict.ac.cn
  • 电话:010-62620695
  • 国际标准刊号:ISSN:0254-4164
  • 国内统一刊号:ISSN:11-1826/TP
  • 邮发代号:2-833
  • 获奖情况:
  • 中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国数学评论(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:48433