位置:成果数据库 > 期刊 > 期刊详情页
基于SOM的离群数据挖掘集成框架研究
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京审计学院计算机科学与技术系,南京210029
  • 相关基金:国家自然科学基金资助项目(60473097);江苏省高校自然科学基金资助项目(06KJD520093)
中文摘要:

在分析了当前基于距离的离群数据挖掘算法的基础上,提出了一种基于SOM的离群数据挖掘集成框架,其具有可扩展性、可预测性、交互性、适应性、简明性等特征。实验结果表明,基于SOM的离群数据挖掘是有效的。

英文摘要:

Based on the analysis of the existing distance-based outlier detection algorithms, this paper proposed a SOM-based unifying framework for mining outliers, which had obvious superiority in scalability, predictability, interactiveness, adaptability, conciseness. Experimental results on real database show that the SOM-based outlier mining is effective.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049