位置:成果数据库 > 期刊 > 期刊详情页
基于联系度的主题关注网络社区发现方法研究
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]燕山大学信息科学与工程学院,河北秦皇岛066004, [2]华北理工大学迁安学院,河北迁安064400, [3]河北省虚拟技术与系统集成重点实验室,河北秦皇岛066004
  • 相关基金:国家自然科学基金(No.61472340);国家青年科学基金(No.61602401);河北省自然科学基金(No.F2016209344);河北省青年科学基金面上项目(No.F2017209070).
中文摘要:

目前,以兴趣或主题分享等为目的的兴趣型社交网络则引领着社交网络改革的浪潮。融合社交关系和兴趣爱好关系构建一个新型社交网络模型——主题关注模型。在此模型基础上,采用集对联系度刻画顶点间相似性度量指标,该度量方法可以更好地刻画网络结构特征,提高传统局部相似性度量指标对某些顶点间相似性值的计算精度,降低全局相似性度量指标的计算复杂度。综合考虑主题影响和社交关系,将集对联系度与凝聚型聚类算法相结合,提出一种新的主题社区发现方法。在Karate网络和豆瓣数据集上进行主题社区发现,实验结果表明,考虑主题影响的划分具有更好的社区结构。

英文摘要:

At present,the interest’s social networks,which share interests or topics,lead to a reform wave of social network.A new social network model,the topic-attention model,fusing the social relations and the topic-attention relation is constructed.Based on this model,firstly,using set pair connection degree to define the similarity between vertices,the measurement can better describe network structure characteristics,overcome the under-estimating for some similarity between vertices based on traditional local structures,and reduce the computational complexity of global similarity indices.Secondly,considering the influence of the topic and the social relationships,a new method of community discovery is proposed based on the set pair connection degree and the clustering algorithm.Finally,in Karate network and douban data set,experiment on the topic community mining,the results show,considering the impact of the topic influence has a better community structure.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887