位置:成果数据库 > 期刊 > 期刊详情页
区间概念格的纵向合并算法
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]华北理工大学理学院,河北唐山063009
  • 相关基金:国家自然科学基金资助项目(61370168,61472340);河北省科技厅条件建设项目(14960112D).
中文摘要:

为解决直接对不同形式背景的数据构建区间概念格后分别抽取关联规则会存在规则缺失的实际问题,必须首先对不同的区间概念格进行合并。为提高格结构的生成与合并效率,首先对区间概念格的渐进式生成算法进行改进,将概念分为存在概念、冗余概念和空概念,分别以结构体的形式存储;进一步,分析区间概念格中外延和内涵之间的二元关系,给出了区间概念格纵向合并的充分条件——区间概念格的一致性;讨论了内涵一致的概念在合并后分为六种情况,并给出相应的判定定理;应用广度优先原则,通过对原区间概念格节点内涵的类型判定及不同的处理方法.设计了一种区间概念格的纵向合并算法。最后,通过实例验证了算法的有效性和高效性。

英文摘要:

To solve the practical problem that some rules may be lost when the association rules are extracted directly after the construction of interval concept lattice for the different formal context, the different interval concept lattices must be merged firstly. To improve the efficiency of lattice generating and consolidation, the incremental generation algorithm of interval concept lattice should be improved firstly, and then the concepts were stored in the form of structures which were divided into existence concepts, redundancy concepts and empty concepts. Secondly, the binary relation between extension and intension was analyzed and the sufficient condition of vertical merger, consistency of interval concept lattice, was defined. Thirdly the concepts which have consistent intension were divided into six kinds after merging and the corresponding decision theorem was given. In the end, based on the principle of breadth-first, a new vertical integration algorithm was designed through the type judgment and different processing methods of the concept lattice nodes in the original interval concept lattice. Finally, an application example verified the effectiveness and efficiency of the algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679