该文研究了黎曼齐次空间G/H中子流形M^p和子流形N^q的交M^p∩gN^q的测地曲率,其中g∈G为等距群,并把M^p∩gN^q的第二基本形式表示成M^p和N^q的测地曲率以及它们之间的夹角的组合.
In this paper,the authors investigate the second fundamental forms of the intersection M^p∩gN^q of submanifolds M^p,N^q in a Riemannian space G/H for g∈G(the group of isometries).As expected,the second fundamental form of M^p∩gN^q can be expressed by the curvatures of M^p,N^q and the angle between M^p and gN^q.