位置:成果数据库 > 期刊 > 期刊详情页
基于改进证据理论和神经网络的故障诊断模型
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP206.3[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]安徽工业大学电气信息学院,安徽马鞍山243002
  • 相关基金:国家自然科学基金资助项目(50407017); 国家“863”高技术研究发展计划资(2007AA05Z242 2007AA05Z421)
中文摘要:

针对单一故障诊断方法精度低的问题,提出了一种基于D-S证据理论和神经网络相融合的决策层融合故障诊断模型。该方法利用证据理论来处理不精确的、模糊的信息,用神经网络来处理证据理论中的基本可信度分配问题。由于证据理论合成公式无法处理高冲突的证据,提出了一种改进的基于冲突焦元的证据合成规则。该模型在降低决策不确定性的同时大大提高了诊断的精度。最后通过发动机故障诊断实例验证了该模型的有效性。

英文摘要:

Directing to the low precision of single fault diagnosis systerm,this paper put forward the decision-level fusion fault diagnosis model which fusing neural network and D-S evidence.The method used D-S's evidence to deal with inaccuracy and fuzzy information,and evidence's basic belief assignment could be sloved by neural network.Proposed a new combination rule,which based on reallocation of the basic probability assigned to conflict focal elements.The method could solve the problem of conflicting evidences.The model could reduce the uncertainty of decision and greatly increase the precision of diagnosis.At last,the engine fault diagnosis example shows that the validity of the decision-level fusion fault diagnosis model.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049