位置:成果数据库 > 期刊 > 期刊详情页
不同光谱植被指数反演冬小麦叶氮含量的敏感性研究
  • ISSN号:0578-1752
  • 期刊名称:《中国农业科学》
  • 分类:S512.1[农业科学—作物学]
  • 作者机构:[1]中国科学院遥感与数字地球研究所,北京100101, [2]中国地质大学地球科学与资源学院,北京100083
  • 相关基金:国家自然科学基金(41371359,41671362); 广西空间信息与测绘重点实验室开放基金(151400727); 高分辨率对地观测系统重大专项(30-Y30B13-9003-14/16,11-Y20A40-9002-15/17)
中文摘要:

【目的】氮素是作物生长发育过程中最重要的营养元素之一,研究叶氮含量反演的有效光谱指标设置,为应用高光谱植被指数反演作物叶氮含量,以及作物的实时监测与精确诊断提供重要依据。【方法】以冬小麦为例,选取涵盖冬小麦全生育期不同覆盖程度225组冠层光谱与叶氮含量数据,通过遥感方法建立模型,模拟了不同光谱指标,即中心波长、信噪比和波段宽度对定量模型的影响,通过模型精度评价指标决定系数(coefficient of determination,R~2)、根均方差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)、平均相对误差(mean relative error,MRE)和显著性检验水平(P〈0.01)确定最优模型及最佳指标,分析光谱指标对叶氮含量定量模型反演的敏感性和有效性。【结果】反演冬小麦叶氮含量的最佳植被指数为MTCI_B,与实测叶氮含量的相关性最好(R~2=0.7674,RMSE=0.5511%,MAE=0.4625%,MRE=11.11个百分点,且P〈0.01),对应的最佳指标为中心波长420 nm、508 nm和405 nm,波段宽度1 nm,信噪比大于70 DB;高覆盖状况反演的最优指数为RVIinf_r(R~2=0.6739,RMSE=0.2964%,MAE=0.2851%,MRE=6.44个百分点,且P〈0.01),最优中心波长为826 nm和760 nm;低覆盖状况反演的最优指数为MTCI(R~2=0.8252,RMSE=0.4032%,MAE=0.4408%,MRE=12.22个百分点,且P〈0.01),最优中心波长为750 nm、693 nm和680 nm;应用最适于高低覆盖的植被指数RVIinf_r和MTCI构建的联合反演模型(R~2=0.9286,RMSE=0.3416%,MAE=0.2988%,MRE=7.16个百分点,且P〈0.01),明显优于最佳单一指数MTCI_B;模拟Hyperion和HJ1A-HSI传感器数据,联合反演模型精度(R~2为0.92—0.93,RMSE在0.37%—0.39%,MAE为0.285%左右,MRE约为7.00个百分点)明显优于单一植被指数反演精度(R~2为0.79—0.81,RMSE为0.63%—0.66%,MAE为0.455%左右,MRE约为10.90个百分点)。【结论】利用高光谱植被指数可有效实现作物叶氮含量反演,?

英文摘要:

[ Objective ] Nitrogen is one of the most important nutrients in crop growth and development. The obj ective of this paper is to study the setting of effective index of leaf nitrogen content inversion in order to provide an important basis for the application of hyperspectral vegetation index of leaf nitrogen content estimation, and for real-time monitoring and accurate diagnosis of crops. [ Method ] A total of 225 groups of canopy reflectance and leaf nitrogen content data which covering the whole winter wheat growth period and under different levels of coverage, were collected to simulate different spectral index like different central wavelengths, SNR and band width indicators, and to analyze the influence of different observation pattern on quantitative models. And then, the indicators of accuracy evaluation, coefficient of determination, root mean square error, mean absolute error, mean relative error and P〈0.01 were used to select the optimal model and the best indicators, and the sensitivity and effectiveness of leaf nitrogen content quantitative models inversion were analyzed with different spectral indicators. [ Result ] MTCI_B was the best vegetation index for leaf nitrogen content inversion with the center wavelengths of 420 nm, 508 nm and 405 nm, band width of lnm, SNR greater than 70 DB; the correlation with measured nitrogen content was preferably (R2=0.7674, RMSE=0.5511%, MAE=0.4625%, MRE=1 1.11 percentage points and P〈0.01). RVIinf_r was the best index for inversion of high coverage with the optimal center wavelengths 826 nm and 760 nm (R2=0.6739, RMSE=0.2964%, MAE=0.2851%, MRE=6.44 percentage points and P〈0.01). MTCI was the best index for inversion of low coverage nitrogen (R2=0.8252, RMSE=0.4032%, MAE=0.4408%, MRE=12.22 percentage points and P〈0.01), corresponding to the optimal center wavelengths 750 nm, 693 nm and 680 nm. Using hyperspectral vegetation indexes RVIinf_r and MTCI to build a joint inversion model, the model accuracy evaluation result (R2=0.9286, RMSE=0.3416

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国农业科学》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国农业部
  • 主办单位:中国农业科学院 中国农学会
  • 主编:万建民
  • 地址:北京中关村南大街12号中国农业科学院图书馆楼4101-4103室
  • 邮编:100081
  • 邮箱:zgnykx@caas.cn
  • 电话:010-82109808 82106279
  • 国际标准刊号:ISSN:0578-1752
  • 国内统一刊号:ISSN:11-1328/S
  • 邮发代号:2-138
  • 获奖情况:
  • 中国期刊方阵“双高”期刊,第三届中国出版政府奖提名奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),英国农业与生物科学研究中心文摘,波兰哥白尼索引,英国动物学记录,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国食品科技文摘,中国北大核心期刊(2000版)
  • 被引量:85620