光纤传感技术已广泛应用于航空航天、石油化工、电子电力、土木工程、生物医药等领域,其技术形式主要体现为分立式和分布式.分立式光纤传感技术利用光纤敏感器件作为传感器来感知被测参量的变化,光纤作为光信号的传输通道连接光纤传感器及后端的解调装置;分布式光纤传感系统基于光纤瑞利散射、拉曼散射或布里渊散射等光学效应,利用光纤本身作为传感器,可对沿途的光信号进行大范围、长距离传感.本文介绍了分立式与分布式光纤传感中主要关键技术的研究进展,并对未来的研究和发展方向进行了探讨.
With the superiority of anti-electromagnetic interference, corrosion resistance, light quality, small size and so on,optical fiber sensing technology is widely used in aerospace industry, petrochemical engineering, power electronics, civil engineering and biological medicine. It can be divided as discrete and distributed. Discrete optical fiber sensing utilizes fiber sensitive element as sensors to detect the quantity to be measured. Optical spectrum, light intensity and polarization are usually used as the sensitivity parameter because they can be modulated by parameter such as rotation, acceleration,electromagnetic field, temperature, pressure, stress, stress, vibration, humidity, viscosity, refractive index and so on.Fiber works as the channel and links the fiber sensor and demodulating equipment. After a long period of research, the discrete optical fiber sensing technology stretch out many branches, we discussed the most representative ones as follows,the fiber grating sensing technique, the fiber fabry perot sensing technique, the fiber gyroscope sensing technique, the fiber intracavity sensing technique, the fiber surface plasma sensing technique, hollow-core fiber whispering gallery mode sensing technique, magnetic fluid fiber sensing technique and fiber-based optical coherence tomography sensing technique.Based on optical effect as rayleigh scattering, Raman scattering and Brillouin scattering, distributed fiber sensing system uses fiber itself as a sensor, when the vibration, stress, voice or temperature acts on the fiber changes, the optical signal transfers inside the fiber will change accordingly. The fiber distributes in a large range and a long distance, then the signal can be located at different positions and realize the multi-position measurement. We discussed the main distributed fiber sensing technologies as follows, the interferometric disturbance fiber sensing technology, the optical frequency domain reflectometry fiber sensing technology, the Φ-optical time domain reflectometer fiber sensi