位置:成果数据库 > 期刊 > 期刊详情页
Fiber loop ring-down cavity integrated U-bent single-mode-fiber for magnetic field sensing
  • ISSN号:2327-9125
  • 期刊名称:《光子学研究:英文版》
  • 时间:0
  • 分类:TN253[电子电信—物理电子学]
  • 作者机构:College of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Department of Mechanical Engineering, Columbia University, Key Laboratory of Opto-electronics Information Technology (Tianjin University) Ministry of Education
  • 相关基金:National Key Scientific Instrument and Equipment Development Project of China(2013YQ03091502);National Natural Science Foundation of China(NSFC)(61378043,61107035)
中文摘要:

A novel magnetic field sensing system based on the fiber loop ring-down technique is proposed in this paper. In the fiber loop, a U-bent single-mode-fiber structure coated with magnetic fluid(MF) serves as the sensing head, and an erbium-doped fiber amplifier(EDFA) is introduced to compensate for the intrinsic loss of the cavity. The ring-down time of the system varies with the change of applied magnetic field due to the tunable absorption coefficient and refractive index of the MF. Therefore, measurement of the magnetic field can be realized by monitoring the ringdown time. The experimental results show that the performance of the system is extremely dependent on the interrogation wavelength, because both the gain of the EDFA and the loss of the sensing head are wavelength dependent.We found that at the optimal wavelength, the ratio of the gain to loss attained its maximum. The sensing system was experimentally demonstrated and a sensitivity of-0.5951 μs∕Oe was achieved.

英文摘要:

A novel magnetic field sensing system based on the fiber loop ring-down technique is proposed in this paper. In the fiber loop, a U-bent single-mode-fiber structure coated with magnetic fluid (MF) serves as the sensing head, and an erbium-doped fiber amplifier (EDFA) is introduced to compensate for the intrinsic loss of the cavity. The ring-down time of the system varies with the change of applied magnetic field due to the tunable absorption coefficient and refractive index of the MF. Therefore, measurement of the magnetic field can be realized by monitoring the ring-down time. The experimental results show that the performance of the system is extremely dependent on the interrogation wavelength, because both the gain of the EDFA and the loss of the sensing head are wavelength dependent. We found that at the optimal wavelength, the ratio of the gain to loss attained its maximum. The sensing system was experimentally demonstrated and a sensitivity of -0.5951 mu s/Oe was achieved. (C) 2016 Chinese Laser Press

同期刊论文项目
同项目期刊论文
期刊信息
  • 《光子学研究:英文版》
  • 主管单位:
  • 主办单位:中国科学院上海光学精密机械研究所
  • 主编:
  • 地址:上海市
  • 邮编:
  • 邮箱:
  • 电话:021-
  • 国际标准刊号:ISSN:2327-9125
  • 国内统一刊号:ISSN:31-2126/O4
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:1