设M2是二阶复矩阵的全体,圣是M2上的线性映射.本文建立了三阶复正交矩阵与M2上的相似变换之间的一一对应关系,并利用这一对应关系证明了Ф保Lie积行列式(谱、边缘谱)的充要条件是存在c∈{±1,±i),二阶可逆矩阵T和二阶矩阵S,使得Ф(A)=cTAT-1+tr(SA)I对所有A∈M2都成立.
Let M2 be the algebra of all 2 × 2 complex matrices and Ф : M2 → M2 be a linear map. A 1-1 correspondence between the set of 3 × 3 complex orthogonal matrices and the set of similarity transformations of M2 is established, which then is applied to show that Ф preserves the determinant (resp. the spectrum, the peripheral spectrum) of Lie products if and only if there exist a scalarc∈{±1,±i}, matrices S, T ∈ M2 with T invertible, such that Ф(A) = cTAT-1 + tr(SA)I for all A∈ M2.