位置:成果数据库 > 期刊 > 期刊详情页
基于小波和神经网络相结合的股票价格模型
  • ISSN号:1000-7024
  • 期刊名称:《计算机工程与设计》
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]楚雄师范学院数学系,云南楚雄675000, [2]云南大学软件学院,云南昆明650091
  • 相关基金:国家自然科学基金项目(60463002)
中文摘要:

针对股票价格构成的时间序列具有随机性与偶然性,传统的单一模型很难满足建模要求的问题,提出一种基于小波和神经网络相结合的股票预测模型。将股票价格进行小波分解成尺度不同的分层数据,分别利用Elman神经网络预测各层数据,将各层的预测结果使用BP神经网络合成最终预测结果。通过实际的股票价格对该模型进行验证,结果表明,该组合模型具有较高的预测效果,可以提高股票价格预测的准确率。

英文摘要:

Considering that time series of stock price is randomness and contingency and traditional method in the stock price prediction using single model couldn't satisfied with practical demand.A new stock price prediction model is proposed, which combines the wavelet transform and artificial neural network.Firstly, the stock price data are decomposed to different scale data using discrete wavelet transform.Then, Elman neural network are used respectively to predict each layer series.Finally, each layer prediction results are combined into the final result through BP neural network.The result of the prediction is verified with the practical stock price and show the new model has better predictive precision.

同期刊论文项目
期刊论文 44 会议论文 10 著作 1
同项目期刊论文
期刊信息
  • 《计算机工程与设计》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团
  • 主办单位:中国航天科工集团二院706所
  • 主编:汤铭瑞
  • 地址:北京142信箱37分箱
  • 邮编:100854
  • 邮箱:ced@china-ced.com
  • 电话:010-68389884
  • 国际标准刊号:ISSN:1000-7024
  • 国内统一刊号:ISSN:11-1775/TP
  • 邮发代号:82-425
  • 获奖情况:
  • 中国科学引文数据库来源期刊,中国学术期刊综合评价数据库来源期刊,中国科技论文统计与分析用期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:45616