利用李代数的知识可以计算旗流形M=SU(5)/U3(1)×SU(2)上非零的结构常数ckij,然后把非零的ckij代入Ricc张量的分量γ1,…,γ6.旗流形M上G不变的黎曼度量g是爱因斯坦度量当且仅当存在正常数e,使得γ 1=γ2=γ 3=γ4=γ5=γ6=e.利用计算Gr(o)bner基的方法得到爱因斯坦方程组有27个正的实数解,即广义旗流形M=SU(5)/U3(1)×SU(2)上有27个不变的爱因斯坦度量(在差常数倍的情况下),其中12个是凯莱爱因斯坦度量,15个是非凯莱爱因斯坦度量。
By the Lie theory we compute the non zero structure constants ckij of the generalized flag manifold of M =SU(5)/U3 (1) × SU(2),then we substitute c,kij into the components γ1,…,γ6 of the Ricc tensor.We know that a G -invariant Riemmanian metric g on M is Einstein if and only if there is a positive constant e such that γ1-γ2-γ3 =γ4 =γ5 =γ6 =e.We obtain twenty-seven positive solutions by computing the Gr(o)bner basis of the system of Einstein equations,that's the generalized flag manifold M =SU(5)/U3 (1)×SU(2) admits twenty seven invariant Einstein metrics(up to a scale),of which twelve are K(a)hler Einstein metrics and fifteen are non K(a)hler Einstein metrics.