非晶合金作为一种快速凝固形成的新型合金材料,引起了材料研究者的极大兴趣.微观结构上长程无序、短程有序的特征使其具有独特的物理、化学和力学性能,在许多领域展现出良好的应用前景,尤其是有望成为核反应堆、航空航天等强辐照环境下的备选结构材料.本文深入探讨非晶合金的辐照效应,主要讨论离子辐照对非晶合金微观结构、宏观力学性能以及其他物理化学性能的影响,可为进一步理解非晶合金的微观结构和宏观力学性能之间的关系提供有效的实验和理论基础,也可为非晶合金在强辐照环境下的服役性能预测提供实验依据,对推进非晶合金这一先进材料的工程化应用具有重要的理论与实际意义.
Metallic glasses (MGs), as new disordered materials prepared by rapidly quenching melted alloys, have attracted tremendous attention in the material science community. Due to their long-ranged disorderd and short-ranged ordered structures, MGs usually exhibit uniquely physical, chemical and mechanical properties, which give rise to promising applications in many fields, and especially they are expected to be potentially structural materials used in irradiation conditions, such as in nuclear reactors and aerospace. In this paper, the effects of ion irradiation on the microstructure, mechanical properties, physical, and chemical properties of MGs are reviewed. It is found that the effects of ion irradiation on the microstructures and mechanical properties depend on the ion energy as well as the composition of MG. When high energy ions interact with a solid, the collisions take place between the incident ions and atoms of the solid, which are dominated by inelastic processes (elec- tronic stopping) and elastic processes (nuclear stopping). The inelastic processes result in the excitation and ionization of substrate atoms. In contrast, the elastic processes lead to ballistic atomic displacements. Nuclear stopping can produce structure defects and irradiation damage in glassy phase. The collisions between the incident ions and the target atoms in MGs can cause the target atoms to deviate from their original positions, and leave a large number of vacancies and interstitial atoms behind. The separations between the vacancies and the interstitial atoms form displacement cascades. The interstitial atoms with a low kinetic energy can transfer self-energies to thermal energies, resulting in a thermal spike due to the accumulation of a large quantity of the thermal energies from interstitial atoms. Such a thermal spike will cause MGs to melt and resolidify, which therefore makes the structure of glassy phase changed. Furthermore, the ion irradiation can modify the structures of MGs by introducing excessive free