位置:成果数据库 > 期刊 > 期刊详情页
基于可见光-近红外光谱特征参数的苹果叶片氮含量预测
  • ISSN号:1000-1298
  • 期刊名称:《农业机械学报》
  • 时间:0
  • 分类:TP79[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置] O657.3[理学—分析化学;理学—化学]
  • 作者机构:[1]河南工程学院土木工程学院,郑州451191, [2]国家农业信息化工程技术研究中心,北京100097, [3]中国矿业大学(北京)地球科学与测绘工程学院,北京100083
  • 相关基金:国家自然科学基金项目(41601346); 北京市自然科学基金项目(4141001); 国家高技术研究发展计划(863计划)项目(2011AA100703)
中文摘要:

苹果叶片氮素是反映苹果品质高低的营养元素之一。为了准确地估算苹果叶片全氮含量(LNC),从可见光-近红外区域的高光谱反射曲线中提取光谱特征参数,应用经验回归分析,实现了对苹果LNC的高光谱监测。研究表明,除了光谱特征曲线面积变量S_(△EFG)显著相关以及面积归一化植被指数(S_(△CDE)-S_(△FGH))/(S_(△CDE)+S_(△FGH))不相关外,其余光谱特征参数与苹果LNC都极显著相关,其中光谱特征曲线斜率K_(ge)、K_(gprv),光谱特征曲线面积S_(△ABC)、S_(△BCD),面积比值植被指数S_(△CDE)/S_(△ABC)、S_(△CDE)/S_(△BCD)、S_(△DEF)/S_(△ABC),面积归一化植被指数(S_(△CDE)-S_(△ABC))/(S_(△CDE)+S_(△ABC))、(S_(△CDE)-S_(△BCD))/(S_(△CDE)+S_(△BCD))和(S_(△DEF)-S_(△ABC))/(S_(△DEF)+S_(△ABC))可以较好地描述LNC的动态变化,这些特征参数对苹果LNC进行估算是可行的。通过检验,最终确定基于S_(△CDE)/S_(△ABC)、(S_(△CDE)-S_(△ABC))/(S_(△CDE)+S_(△ABC))和(S_(△DEF)-S_(△ABC))/(S_(△DEF)+S_(△ABC))所构建的模型为预测苹果LNC的理想模型。

英文摘要:

Apple nitrogen status is a key indicator for evaluating quality of apple fruits. In order to estimate total nitrogen content of apple leaves (LNC), a way was proposed to monitor LNC which extracted spectral characteristics parameters from hyperspectral reflectance in the visible and near infrared regions. Hyperspectral monitoring of LNC was realized by using empirical regression analysis. Results showed that the correlation between spectral parameters and leaf nitrogen content was good in whole growth period, the best spectral parameters were Kge and S△ABC, respectively, the correlation coefficient was 0.85, the correlation between spectral parameters and leaf nitrogen content was bad, and a lot of spectral parameters were highly uncorrelated. Modeling results showed that the best model in the slope of the spectral characteristic curve was Kge of Fuji apple, the determination coefficient was 0.76, the root mean square error was 0.28, the relative error was zero, the best model in spectral characteristic curve area was S△ABC and S△BCD of gala apple, the determination coefficient was all 0.76, the root mean square error was all 0.30, the relative error was all 0.01%and zero;the best model in area ratio vegetation index was S△CDE /S△BCD and S△CDE /S△BCD of Fuji apple and S△DEF/S△ABC of Gala apple, the determination coefficient was 0.74, the root mean square error was all 0.35, the relative error was 0.01% and 0.02%, the best model in area normalized vegetation index was (S△CDE-S△BCD)/(S△CDE+S△BCD) in the whole growth period and (S△CDE-S△ABC/(S△CDE+S△ABC) of Gala apple, the determination coefficient was all 0.73, the root mean square error was 0.36 and 0.31, and the relative error was zero and -0.01%. The best verification results was area ratio vegetation index S△CDE/S△ABC, the determination coefficient, the root mean square error and the relative error was 0.47, 0.34 and -3.78% in the whole growth period, respectively. The determination coefficient, the ro

同期刊论文项目
同项目期刊论文
期刊信息
  • 《农业机械学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国农业机械学会 中国农业机械化科学研究院
  • 主编:任露泉
  • 地址:北京德胜门外北沙滩一号6号信箱
  • 邮编:100083
  • 邮箱:njxb@caams.org.cn
  • 电话:010-64882610 64867367
  • 国际标准刊号:ISSN:1000-1298
  • 国内统一刊号:ISSN:11-1964/S
  • 邮发代号:2-363
  • 获奖情况:
  • 荣获中国科协优秀期刊二等奖,1997~2000年连续4年获中国科协择优资金,被列入中国期刊方阵,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),英国农业与生物科学研究中心文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:42884