利用Kolmogorov熵的方法研究了基于相依函数型数据条件密度函数的非参数估计,在一定的条件下建立了条件密度函数双重核估计量的几乎完全一致收敛速度及估计量的渐近分布,推广了现有文献中相关结果.
In this paper, we investigate the almost uniform complete convergence of nonpara- metric conditional density estimation for functional data by the Kolmogorov's entropy in some semi-metric functional space and obtain the uniform almost complete convergence rate of the estimator under dependent case, which extend the i.i.d, functional data to the dependence setting. At the same time, the asymptotic normal of the estimator is also established in this case.