位置:成果数据库 > 期刊 > 期刊详情页
Kriging模型的增量构造及其在全局优化中的应用
  • ISSN号:1003-9775
  • 期刊名称:《计算机辅助设计与图形学学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]华中科技大学国家CAD支撑软件工程技术研究中心,武汉430074
  • 相关基金:基金项目:国家自然科学基金(50775084);国家“高档数控机床与基础制造装备”科技重大专项(2009ZX040001015).
中文摘要:

为了解决高效全局优化算法(EGO)中迭代次数增多时构建Kriging模型速度过慢,以及对于某些响应值变化范围较大的目标函数出现过早收敛的问题,提出了增量Kriging方法和基于此方法的改进EGO算法.增量方法利用已经得到的关联矩阵的逆矩阵和新增的数据点忽略关联系数优化的过程,直接进行一系列矩阵运算,得到新关联矩阵的逆矩阵,进而得到更新后的预测模型.改进的EGO算法使用上述的增量方法和更加严谨的停止规则,包括改善期望、自变量和响应值的停止准则.最后使用标准函数分别对增量方法和EGO算法进行测试,结果表明,增量方法可在损失少量精度的情况下大大缩短模型更新的时间,改进的EGO算法具有更高的效率和稳定性.

英文摘要:

In efficient global optimization (EGO) algorithm, the time of rebuilding the Kriging model increases rapidly with the increasing of samples' size, and premature convergence may exist when the range of the objective function is too large. To conquer these problems, an incremental Kriging method (IKM) and the improved EGO algorithm are proposed. The inversion of the correlation matrix and the new data points are manipulated to get the coefficients of the Kriging model in IKM, while coefficients of correlation function are optimized and the inversion of new correlation matrix is directly calculated. Stopping criteria on expected improvement, response value and argument are used in the improved EGO algorithm. The experimental results demonstrate that IKM greatly reduces the time of modelling with little loss of accuracy and the improved EGO method has higher efficiency and better stability.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机辅助设计与图形学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国计算机学会
  • 主编:鲍虎军
  • 地址:北京2704信箱
  • 邮编:100190
  • 邮箱:jcad@ict.ac.cn
  • 电话:010-62562491
  • 国际标准刊号:ISSN:1003-9775
  • 国内统一刊号:ISSN:11-2925/TP
  • 邮发代号:82-456
  • 获奖情况:
  • 第三届国家期刊奖提名奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:24752