这份报纸在结构的设计做一条途径到近似最佳,它联合基于的全球反应表面(GRS ) multivariate 有行动限制策略(MLS ) 的适应回归花键(火星) 。火星是一个适应回归过程,它符合多维的问题。简化高度维的问题进更小的高度精确的模型采用修改递归的划分策略。为移动并且缩放搜索分区的 MLS 在设计变量的空格被采用。近似功能的质量和优化过程的集中历史在 MLS 被反映。明确地,常规反应表面方法(RSM ) 的劣势被避免了高度非线性的高度维的问题。有 MLS 的 GRS/MARS 被用于高度维的测试功能和一个设计问题表明它的可行性和集中,并且与二次的反应相比,表面(QRS ) 以计算效率和精确性当模特儿。
This paper makes an approach to the approximate optimum in structural design,which combines the global response surface(GRS) based multivariate adaptive regression splines(MARS) with Move-Limit strategy(MLS).MARS is an adaptive regression process,which fits in with the multidimensional problems.It adopts a modified recursive partitioning strategy to simplify high-dimensional problems into smaller highly accurate models.MLS for moving and resizing the search sub-regions is employed in the space of design variables.The quality of the approximation functions and the convergence history of the optimization process are reflected in MLS.The disadvantages of the conventional response surface method(RSM) have been avoided,specifically,highly nonlinear high-dimensional problems.The GRS/MARS with MLS is applied to a high-dimensional test function and an engineering problem to demonstrate its feasibility and convergence,and compared with quadratic response surface(QRS) models in terms of computational efficiency and accuracy.