针对遗传算法优化的BP神经网络纱线强力预测模型中存在的迭代冗余、过早收敛等问题,建立了遗传算法与模拟退火算法共同优化的BP神经网络棉纱纱线强力预测模型。在模型构建前,采用K折交叉验证将70组样本数据分成训练样本集和测试样本集,实现测试样本与训练样本的不重复,避免了样本数据的单一性。在模型构建时,试验分别对70组27.8 tex和14.6 tex的环锭纺纯棉纱进行单纱强力预测,将该模型与BP神经网络纱线强力预测模型、遗传算法优化的BP神经网络纱线强力预测模型进行对比分析。实验结果表明,遗传算法与模拟退火算法共同优化的BP神经网络纱线强力预测模型在准确性和稳定性方面要优于前两者,能够较好地实现纱线质量预测,为纱线强力预测提供了新的方法。