Ex-vivo liver resection is a procedure in which the liver is completely removed, perfused and after bench surgery, the liver is autotransplanted to the original site. Ex vivo liver resection is an important treatment for unresectable liver tumors. This surgical procedure requires long operation time, during which blood flow must be carefully maintained to avoid venous congestion. An effective veno-venous bypass (VVB) may meet this requirement. The present study was to test our new designed VVB device which comprised one heparinized polyvinylchloride tube and three magnetic rings The efficacy of this device was tested in five dogs. A VVB was established in 6-10 minutes. There was no leakage during the procedure. Hemodynamics was stable at anhepatic phase, which indicated that the bypass was successful. This newly-developed VVB device maintained circulation stability during ex-vivo liver resection in our dog model and thus, this VVB device significantly shortened the operation time.
Ex-vivo liver resection is a procedure in which the liver is completely removed, perfused and after bench surgery, the liver is autotransplanted to the original site. Ex vivo liver resection is an important treatment for unresectable liver tumors. This surgical procedure requires long operation time, during which blood flow must be carefully maintained to avoid venous congestion. An effective veno-venous bypass (VVB) may meet this requirement. The present study was to test our new designed VVB device which comprised one heparinized polyvinylchloride tube and three magnetic rings The efficacy of this device was tested in five dogs. A VVB was established in 6-10 minutes. There was no leakage during the procedure. Hemodynamics was stable at anhepatic phase, which indicated that the bypass was successful. This newly-developed VVB device maintained circulation stability during ex-vivo liver resection in our dog model and thus, this VVB device significantly shortened the operation time.