本文考虑人体颈动脉粥样硬化斑块的力学建模及其数值计算.颈动脉粥样硬化斑块的动力学行为由控制血液流动的不可压缩Navier-Stokes方程和控制动脉形变的弹性方程耦合描述,因此完整的硬化斑块模型是一组三维流体/固体耦合方程,其数学理论和数值计算都面临极大的困难.但在一定的假设条件下,该问题可简化为一个弹性力学方程.本文考虑粥样硬化斑块简化模型的数值计算问题.我们构造了一个针对模型简化方程的有效算法,即基于空间方向上的谱元离散和时间方向的Newmark格式的计算方法.分析显示前者对光滑解具有指数收敛性,而后者具有二阶收敛精度并且在特定的参数条件下无条件稳定.论文不仅讨论了连续问题以及半离散问题的稳定性,而且给出了全离散格式的最优误差估计.最后通过数值模拟验证了所提算法的有效性和理论分析结果,并对一些具有实际背景参数的模型问题进行了模拟.
In this paper, we propose a numerical method for the elastic equation governing the blood driven motion of human carotid atherosclerotic plaques. The proposed schema combines a spectral element method for the spatial discretization and a Newmark-like method for the time discretization. We obtain the optimal error estimate for the numerical solution to the full-discrete problem, showing that the convergence is exponential in space and of second order in time. It is also proven that the overall schema is unconditionally stable in certain cases. Finally, we present some numerical examples to verify the error estimates, and carry out a simulation in an application domain extracted from practical experiments.