做 Ga 的 ZnO nanowires 被一个搏动的激光化学药品蒸汽免职方法综合了。水晶结构和光致发光系列显示掺杂物原子很好集成于 ZnO wurtzite 格子。在不同温度的光电流性质系统地为作为一台三终端的设备设置的 nanowires 被调查了。在试验性的热点之中,显著 semiconductor-to-metal 转变发生在紫外 band-to-band 刺激之上。这是在电子活动性从急速地提高的库仑相互作用并且表面散布产生的减小的后果。另一个特征是在在轻照耀之上的 220 和 320 K 的二条抵抗山谷的可再现的存在。这现象从在从本国的缺点以及外来的 Ga 掺杂物产生的杂质乐队套住和 detrapping 过程发源。这个工作在 quasi-one-dimensional 结构,提高的库仑相互作用,散布的表面,和状态能显著地影响的杂质由于维的监禁表明那费用运输。
Ga-doped ZnO nanowires have been synthesized by a pulsed laser chemical vapor deposition method. The crystal structure and photoluminescence spectra indicate that the dopant atoms are well integrated into the ZnO wurtzite lattice. The photocurrent properties at different temperatures have been systematically investigated for nanowires configured as a three-terminal device. Among the experimental highlights, a pronounced semiconductor-to-metal transition occurs upon UV band-to-band excitation. This is a consequence of the reduction in electron mobility arising from the drastically enhanced Coulomb interactions and surface scattering. Another feature is the reproducible presence of two resistance valleys at 220 and 320 K upon light irradiation. This phenomenon originates from the trapping and detrapping processes in the impurity band arising from the native defects as well as the extrinsic Ga dopants. This work demonstrates that due to the dimensional confinement in quasi-one-dimensional structures, enhanced Coulomb interaction, surface scattering, and impurity states can significantly influence charge transport.