位置:成果数据库 > 期刊 > 期刊详情页
一种基于数学形态学与小波域增强的滤波算法
  • ISSN号:1000-7180
  • 期刊名称:微电子学与计算机
  • 时间:2012.7
  • 页码:64-67
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国矿业大学环境与测绘学院,江苏徐州221116, [2]中国矿业大学信息与电气工程学院,江苏徐州221116
  • 相关基金:国家自然科学基金(41171343); 江苏高校优势学科建设工程项目(PAPD)
  • 相关项目:数字摄影测量影像目标精密定位与精度估计研究
中文摘要:

为了有效滤除图像高斯噪声,将数学形态学与小波域增强相结合,提出了一种高斯噪声新型滤波算法.该算法首先将噪声图像进行二维小波分解,得到低频和高频子图像;然后保留低频子图像不变,对各高频子图像根据其噪声分布特点分别设计出多角度、多结构逐级形态学滤波器进行滤波处理,并进行小波分解系数重构;最后对经过形态学滤波后的图像进行2层小波分解,通过设计出一种新型小波增强函数对不同幅值的小波系数进行不同程度的收缩处理,在此基础上进行分解系数重构.将自适应中值滤波与数学形态学滤波与本文算法进行比较,实验证明本文滤波算法其去噪效果优于前两种算法.

英文摘要:

In order to filter the Gaussian noise in digital image,combining the Mathematical morphology and Wavelet domain enhancement,a new filter algorithm is put forward.Firstly,the noise image is conducted two-dimensional wavelet decomposition,obtaining high-frequency and low-frequency sub image.Then keep the low-frequency sub image unchanged,according to the characteristics of the Gaussian noise distribution in each high-frequency sub image,the multi-angles,multi-structure mathematical morphology filters are designed to filter out the Gaussian noise,then the wavelet coefficient are reconstructed.Finally,the image after mathematical morphology filtering are conducted two layer wavelet decomposition,a new wavelet domain enhancement function is designed so as to contract the different amplitude wavelet coefficients in different degree,then the wavelet coefficient are reconstructed.The adaptive average filter and mathematical morphology and the new filter algorithm in this paper are applied to denoising the Gaussian noise in digital image respectively,the experiment results show that the new filter algorithm in this paper is better than the others.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《微电子学与计算机》
  • 中国科技核心期刊
  • 主管单位:中国航天科技集团公司
  • 主办单位:中国航天科技集团公司第九研究院第七七一研究所
  • 主编:李新龙
  • 地址:西安市雁塔区太白南路198号
  • 邮编:710065
  • 邮箱:mc771@163.com
  • 电话:029-82262687
  • 国际标准刊号:ISSN:1000-7180
  • 国内统一刊号:ISSN:61-1123/TN
  • 邮发代号:52-16
  • 获奖情况:
  • 航天优秀期刊,陕西省优秀期刊一等奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:17909