证明了如下的结论:设k≥2是一个正整数,F是区域D上的一族全纯函数,其中每个函数的零点重级至少是k,h(z),a1(z),a2(z)…,ak(z)是D上的不恒为零的全纯函数.假设下面的两个条件也成立:Af∈F,(a)在f(z)的零点处,f(z)的微分多项式的模小于h(z)的模;(b)f(z)的微分多项式不取h(z),则,在D上正规.
In this paper, we proved: Let k ≥ 2 be a positive integer, 37 be a family of holomorphic functions, all of whose zeros have multiplicities at least k, and let h(z), al(z), a2(z), ..., ak(z) are all nonequivalent to 0 on D. If for any f E 37, the following two conditions are satisfied: (a) f(z) = 0 |f(k) (z) + al (z)f(k-l) (z) +... + ak(z)f(z)| 〈 |h(z) |; (b) f(k)(z)+al(z)f(k-1)(z)+.:.+ak(z)f(z) ≠ h(z),where al(z),aa(z),...ak(z) and f have no common zeros, then 37 is normal on D.