把局部1维思想和多辛方法相结合,研究了2维薛定谔方程的局部1维多辛格式.把2维薛定谔方程的多辛哈密尔顿形式分裂成2个局部1维的薛定谔方程的多辛方程组.对此局部1维的哈密尔顿系统用多辛格式进行离散.此种多辛格式大大提高了计算的时间效率和空间效率..
Combining the local one-dimensional thought with multisymplectic integrator, the local one-dimensional multisymplectic scheme (LOD-MS) is investigated for the two-dimensional Schr6dinger equations. One splits the multisymplectic formulism of Schr6dinger equation into two local one-dimensional multisymplectic systems of Schrodinger equations. Then, they are discretized by multisymplectic integrators. The LOD-MS greatly improves the efficiency of time-consuming and memory-consuming.